Affiliation:
1. *The Department of Genetics and Genomics and
2. The Pulmonary Center, Boston University School of Medicine, Boston, MA 02118
Abstract
Secreted modular calcium-binding protein-2 (SMOC-2) is a recently-identified SPARC-related protein of unknown function. In mRNA profiling experiments we, found that SMOC-2 expression was elevated in quiescent (G0) mouse fibroblasts and repressed after mitogenic stimulation with serum. The G0-specific expression of SMOC-2 was similar to that of platelet-derived growth factor-β receptor (PDGFβR), a major mitogenic receptor. Therefore, we tested a possible role for SMOC-2 in growth factor-induced cell cycle progression. SMOC-2 overexpression augmented DNA synthesis induced by serum and fibroblast mitogens (including PDGF-BB and basic fibroblast growth factor). Conversely, SMOC-2 ablation by using small interfering RNA attenuated DNA synthesis in response to PDGF-BB and other growth factors. Mitogen-induced expression of cyclin D1 was attenuated in SMOC-2–ablated cells, and cyclin D1-overexpressing cells were resistant to inhibition of mitogenesis after SMOC-2 ablation. Therefore, cyclin D1 is limiting for G1 progression in SMOC-2–deficient cells. SMOC-2 ablation did not inhibit PDGF-induced PDGFβR autophosphorylation or PDGF-BB–dependent activation of mitogen-activated protein kinase and Akt kinases, suggesting that SMOC-2 is dispensable for growth factor receptor activation. However, integrin-linked kinase (ILK) activity was reduced in SMOC-2–ablated cells. Ectopic expression of hyperactive ILK corrected the defective mitogenic response of SMOC-2–deficient cells. Therefore, SMOC-2 contributes to cell cycle progression by maintaining ILK activity during G1. These results identify a novel role for SMOC-2 in cell cycle control.
Publisher
American Society for Cell Biology (ASCB)
Subject
Cell Biology,Molecular Biology
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献