Local cellular neighborhood controls proliferation in cell competition

Author:

Bove Anna12,Gradeci Daniel13,Fujita Yasuyuki4,Banerjee Shiladitya35,Charras Guillaume125,Lowe Alan R.16

Affiliation:

1. London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom

2. Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom

3. Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom

4. Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-0815, Japan

5. Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom

6. Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom

Abstract

Cell competition is a quality-control mechanism through which tissues eliminate unfit cells. Cell competition can result from short-range biochemical inductions or long-range mechanical cues. However, little is known about how cell-scale interactions give rise to population shifts in tissues, due to the lack of experimental and computational tools to efficiently characterize interactions at the single-cell level. Here, we address these challenges by combining long-term automated microscopy with deep-learning image analysis to decipher how single-cell behavior determines tissue makeup during competition. Using our high-throughput analysis pipeline, we show that competitive interactions between MDCK wild-type cells and cells depleted of the polarity protein scribble are governed by differential sensitivity to local density and the cell type of each cell’s neighbors. We find that local density has a dramatic effect on the rate of division and apoptosis under competitive conditions. Strikingly, our analysis reveals that proliferation of the winner cells is up-regulated in neighborhoods mostly populated by loser cells. These data suggest that tissue-scale population shifts are strongly affected by cellular-scale tissue organization. We present a quantitative mathematical model that demonstrates the effect of neighbor cell–type dependence of apoptosis and division in determining the fitness of competing cell lines.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3