DNA binding by the MATα2 transcription factor controls its access to alternative ubiquitin-modification pathways

Author:

Hickey Christopher M.1,Xie Yang1,Hochstrasser Mark1

Affiliation:

1. Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520

Abstract

Like many transcription factors, the yeast protein MATalpha2 (α2) undergoes rapid proteolysis via the ubiquitin-proteasome system (UPS). At least two ubiquitylation pathways regulate α2 degradation: one pathway utilizes the ubiquitin ligase (E3) Doa10 and the other the heterodimeric E3 Slx5/Slx8. Doa10 is a transmembrane protein of the endoplasmic reticulum/inner nuclear membrane, whereas Slx5/Slx8 localizes to the nucleus and binds DNA nonspecifically. While a single protein can often be ubiquitylated by multiple pathways, the reasons for this “division of labor” are not well understood. Here we show that α2 mutants with impaired DNA binding become inaccessible to the Slx5/Slx8 pathway but are still rapidly degraded through efficient shunting to the Doa10 pathway. These results are consistent with the distinct localization of these E3s. We also characterized a novel class of DNA binding-defective α2 variants whose degradation is strongly impaired. Our genetic data suggest that this is due to a gain-of-function interaction that limits their access to Doa10. Together, these results suggest multiple ubiquitin-ligation mechanisms may have evolved to promote rapid destruction of a transcription factor that resides in distinct cellular subcompartments under different conditions. Moreover, gain-of-function mutations, which also occur with oncogenic forms of human transcription factors such as p53, may derail this fail-safe system.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3