Mechanical loading regulates organization of the actin cytoskeleton and column formation in postnatal growth plate

Author:

Killion Christy H.1,Mitchell Elizabeth H.1,Duke Corey G.1,Serra Rosa1

Affiliation:

1. Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294

Abstract

Longitudinal growth of bones occurs at the growth plates where chondrocytes align into columns that allow directional growth. Little is known about the mechanisms controlling the ability of chondrocytes to form columns. We hypothesize that mechanical load and the resulting force on chondrocytes are necessary during active growth for proper growth plate development and limb length. To test this hypothesis, we created a mouse model in which a portion of the sciatic nerve from one hind limb was transected at postnatal day 8 to cause paralysis to that limb. At 6 and 12 wk postsurgery, the hind limb had significantly less bone mineral density than contralateral controls, confirming reduced load. At 8 and 14 wk postsurgery, tibiae were significantly shorter than controls. The paralyzed growth plate showed disruptions to column organization, with fewer and shorter columns. Polarized light microscopy indicated alterations in collagen fiber organization in the growth plate. Furthermore, organization of the actin cytoskeleton in growth plate chondrocytes was disrupted. We conclude that mechanical load and force on chondrocytes within the growth plate regulate postnatal development of the long bones.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3