SIRT1 Acts as a Nutrient-sensitive Growth Suppressor and Its Loss Is Associated with Increased AMPK and Telomerase Activity

Author:

Narala Swami R.1,Allsopp Richard C.2,Wells Trystan B.1,Zhang Guanglei1,Prasad Prerna2,Coussens Matthew J.2,Rossi Derrick J.3,Weissman Irving L.3,Vaziri Homayoun1

Affiliation:

1. *Ontario Cancer Institute, Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G-2M9, Canada;

2. Institute for Biogenesis Research, University of Hawaii, Honolulu, HI 96813

3. Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305; and

Abstract

SIRT1, the mammalian homolog of SIR2 in Saccharomyces cerevisiae, is an NAD-dependent deacetylase implicated in regulation of lifespan. By designing effective short hairpin RNAs and a silent shRNA-resistant mutant SIRT1 in a genetically defined system, we show that efficient inhibition of SIRT1 in telomerase-immortalized human cells enhanced cell growth under normal and nutrient limiting conditions. Hematopoietic stem cells obtained from SIRT1-deficient mice also showed increased growth capacity and decreased dependency on growth factors. Consistent with this, SIRT1 inhibition was associated with increased telomerase activity in human cells. We also observed a significant increase in AMPK levels up on SIRT1 inhibition under glucose limiting conditions. Although SIRT1 suppression cooperated with hTERT to promote cell growth, either overexpression or suppression of SIRT1 alone had no effect on life span of human diploid fibroblasts. Our findings challenge certain models and connect nutrient sensing enzymes to the immortalization process. Furthermore, they show that in certain cell lineages, SIRT1 can act as a growth suppressor gene.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3