Cell Context-specific Effects of the β-Tubulin Glycylation Domain on Assembly and Size of Microtubular Organelles

Author:

Thazhath Rupal1,Jerka-Dziadosz Maria2,Duan Jianming3,Wloga Dorota1,Gorovsky Martin A.3,Frankel Joseph4,Gaertig Jacek1

Affiliation:

1. Department of Cellular Biology, University of Georgia, Athens, GA 30602

2. Department of Cell Biology, M. Nencki Institute of Experimental Biology, Polish Academy of Science, 02-093 Warsaw, Poland

3. Department of Biology, University of Rochester, Rochester, NY 14627

4. Department of Biological Sciences, University of Iowa, Iowa City, IA 52242

Abstract

Tubulin glycylation is a posttranslational modification found in cells with cilia or flagella. The ciliate Tetrahymena has glycylation on ciliary and cortical microtubules. We showed previously that mutating three glycylation sites on β-tubulin produces immotile 9 + 0 axonemes and inhibits cytokinesis. Here, we use an inducible glycylation domain mutation and epitope tagging to evaluate the potential of glycylation-deficient tubulin for assembly and maintenance of microtubular systems. In axonemes, the major defects, including lack of the central pair, occurred during assembly, and newly made cilia were abnormally short. The glycylation domain also was required for maintenance of the length of already assembled cilia. In contrast to the aberrant assembly of cilia, several types of cortical organelles showed an abnormally high number of microtubules in the same mutant cells. Thus, the consequences of deficiency in tubulin glycylation are organelle type specific and lead to either insufficient assembly (cilia) or excessive assembly (basal bodies and cortical microtubules). We suggest that the diverse functions of the β-tubulin glycylation domain are executed by spatially restricted microtubule-associated proteins.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3