Recognition of apoptotic cells by viable cells is specific, ubiquitous, and species independent: analysis using photonic crystal biosensors

Author:

Pattabiraman Goutham1,Lidstone Erich A.2,Palasiewicz Karol1,Cunningham Brian T.324,Ucker David S.135

Affiliation:

1. Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612

2. Department of Bioengineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801

3. Cancer Center, University of Illinois College of Medicine, Chicago, IL 60612

4. Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801

5. Department of Bioengineering, University of Illinois College of Medicine, Chicago, IL 60612

Abstract

Apoptotic recognition is innate and linked to a profound immune regulation (innate apoptotic immunity [IAI]) involving anti-inflammatory and immunosuppressive responses. Many of the molecular and mechanistic details of this response remain elusive. Although immune outcomes can be quantified readily, the initial specific recognition events have been difficult to assess. We developed a sensitive, real-time method to detect the recognition of apoptotic cells by viable adherent responder cells, using a photonic crystal biosensor approach. The method relies on characteristic spectral shifts resulting from the specific recognition and dose-dependent interaction of adherent responder cells with nonadherent apoptotic targets. Of note, the biosensor provides a readout of early recognition-specific events in responder cells that occur distal to the biosensor surface. We find that innate apoptotic cell recognition occurs in a strikingly species-independent manner, consistent with our previous work and inferences drawn from indirect assays. Our studies indicate obligate cytoskeletal involvement, although apoptotic cell phagocytosis is not involved. Because it is a direct, objective, and quantitative readout of recognition exclusively, this biosensor approach affords a methodology with which to dissect the early recognition events associated with IAI and immunosuppression.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3