İNDOMETAZİN İÇEREN YÜZEN-PULSATİL İÇİ BOŞ BONCUKLARIN HAZIRLANMASI VE İN-VİTRO KARAKTERİZASYONU

Author:

ÖZAKAR Emrah1,GÜNEŞ Hasan Burak,SEVİNÇ ÖZAKAR Rukiye1

Affiliation:

1. ATATÜRK ÜNİVERSİTESİ, ECZACILIK FAKÜLTESİ

Abstract

Objective: Objective: Designing matrix structured controlled release systems using polymers or waxy lipids is a popular option today. Hollowbeads are formulations characterized by the formation of an air-filled cavity inside. In our study, indomethacin was chosen as a model drug. Cetyl alcohol was selected to create the hollowbeads structure, and NaCMC was chosen to achieve long-term release. Kollicoat® MAE100P was used to reduce and/or prevent ulcer formation and control release.Material and Method: The formulations were prepared using a new “wax removal” technique. Different concentrations of ZnCl2 and CaCl2 were used as crosslinkers. In the preformulation studies, 24 different formulations were prepared by changing the amount of NaCMC, the amount of crosslinker, and the crosslinking time. The structure, size, encapsulation efficiency, yield, hollow structure, and long-term release capacity were investigated in the formulations. These parameters were statistically evaluated depending on the amount of NaCMC, the type of crosslinker, the amount of crosslinker, and contact times with the crosslinker.Result and Discussion: Hollowbeads were characterized by SEM and FT-IR. In vitro release studies, release kinetics, and release mechanisms were performed in pH 1.2 HCl and pH 6.8 phosphate buffer media. Swelling, and buoyancy studies were performed. The long-term stability, encapsulation efficiencies, drug loading efficiencies, and yields of the formulations were also evaluated. Two promising formulations (F2 and F19) were found to be able to release indomethacin in both the stomach and intestinal media for 24 hours.

Publisher

Ankara Universitesi Eczacilik Fakultesi Dergisi

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3