ACOUSTIC ABSORBERS MADE OF WOOD FIBER COMPOSITES DEVELOPED BY COMPRESSION MOLDING AND ADDITIVE MANUFACTURING

Author:

SEKAR VIGNESH,PALANIYAPPAN SABARINATHAN,EH NOUM SE YONG,PUTRA AZMA,SIVANESAN SIVAKUMAR,CHIN VUI SHENG DESMOND DANIEL

Abstract

This research aims to address the noise pollution by developing an acoustic absorber made of polylactic acid (PLA)/polyhydroxyalkanoates (PHA)-wood fibers (PLA/PHA-WF) by compression molding (CM) and additive manufacturing (AM). Physical, mechanical, thermal, water absorption, and biodegradation properties of the developed acoustic absorbers by CM and AM were characterized and compared. Upon providing an air gap, thin absorbers developed by AM exhibit an increased and narrow acoustic peak than the CM absorbers because of theHelmholtz resonance effect due to the decreased density and increased porosity in the AM absorber. The results also show that the mechanical and thermal properties of theabsorbers developed by CM and AM were almost similar and absorber developed by AM shows anincreased rate of water absorption and biodegradation compared to absorber developed by CM due to the presence of porosity in the AM structure.

Publisher

Pulp and Paper Research Institute

Subject

General Materials Science,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3