OPTIMIZATION OF THE MANUFACTURING OF METASEQUOIA-BASED THREE-LAYER STRUCTURE PARQUET FLOORING BY A RESPONSE SURFACE METHODOLOGY

Author:

ZHANG HUIMIN,YANG YU,LIU YU,JIANG YAHUA,LIU RENYUAN

Abstract

On the basis of a single-factor experiment, a mathematical model was established by the response surface analysis method based on the Box-Behnken experimental design principle. The effects of three factors, including hot-pressing temperature, hot-pressing time, and hot-pressing pressure, and their interactions on the modulus of rupture (MOR) of Metasequoia-based three-layered structure parquet flooring were studied. The results show that the quadratic polynomial model in the regression equation is significant, and the correlation between the value predicted by the model and the experimental value is 91.17%. The optimized best hot-pressing process parameters are determined to be as follows: hot-pressing temperature of 96.03°C, hot-pressing time of 6.70 min, and hot-pressing pressure of 8 kg·cm-2. Under these conditions, the best MOR are obtained, reaching a value of 102.05 MPa. The theoretically predicted value is in good agreement with the experimental results.

Publisher

Pulp and Paper Research Institute

Subject

General Materials Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3