A NOVEL WOOD FEATURE EXTRACTION METHOD BASED ON IMPROVED BLOCKED HIGHER-ORDER LOCAL AUTO-CORRELATION

Author:

LIU ZIHAO,ZHANG SULAN,JIA XIAOJUN,YANG JUN

Abstract

Traditionally, HLAC (Higher-order Local Auto-Correlation) algorithm was used to extract texture features of wood images. However, heavy memory consumption and complexity of high-order mask pattern were common in HLAC. A novel feature extraction strategy based on improved blocked higher-order local auto-correlation (IBHLAC) is proposed to circumvent these problems. Initially, sequences of the whole wood image frames, which are the grayscale treatment, were being divided into series of subdivisions vertically and horizontally. Additionally,to enhance auto-correlation ability of the proposed method, different high-order patterns of masks were rebuilt based on zero-order mask by introducing the morphology and affine transformation. Finally, time-consumption and memory occupation of related four methods were compared. Experiment results indicated IBHLAC costs less time and fewer memory consumption on the wood texture database compared with other methods, which reveal that IBHLAC is efficient.

Publisher

Pulp and Paper Research Institute

Subject

General Materials Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3