BIOSOCIAL DIVERSITY OF SCOTS PINE (PINUS SYLVESTRIS L.) IN A TREE STAND IN RELATION TO CHOSEN HYDRAULIC CONDUCTIVITY INDICATORS OF THE STEM

Author:

Jelonek Tomasz,Pazdrowski Witold,Kopaczyk Joanna,Arasimowicz-Jelonek Magdalena,Tomczak Arkadiusz

Abstract

The research focused in determining the lignification indicator of fresh needled springs and the mass of fresh needles in reference to the lignin content in tracheid walls of peripheral area of the stem (MFT/LC and MFN/LC) of Scots pine differentiated as far as its biosocial position within the community expressed by Kraft’s classification. The material for the analysis came from mature pine stands growing on North European Plain, on the territory of Poland. Chemical and structural analyses of wood encompassed the area of mature sapwood, i.e. thickness of the last 10 annual rings located at 1.3 m (DBH). It seems that the noticed differences values of both indicators (MFT/LC and MFN/LC) in pines belonging to the first three Kraft’s biological classes are connected with physiological, physical and structural conditionings of water transport with minerals in xylem and are closely connected with competition for sunlight, water, nutrients and living space.

Publisher

Pulp and Paper Research Institute

Subject

General Materials Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3