A Comparative Analysis and Prediction over Bitcoin Price Using Machine Learning Technique

Author:

Gupta Meenu, , ,Srivastava Riya

Abstract

Bitcoin is one of the primary computerized monetary forms to utilize peer innovation to work with moment installments. The free people and organizations who own the overseeing figuring control and take part in the bitcoin network—bitcoin miners— are accountable for preparing the exchanges on the blockchain and are persuaded by remunerations (the arrival of new bitcoin) and exchange charges paid in bitcoin. These excavators can be considered as the decentralized authority implementing the believability of the bitcoin network. New bitcoin is delivered to the excavators at a fixed yet occasionally declining rate. There is just 21 million bitcoin that can be mine altogether. As of January 30, 2021, there are around 18,614,806 bitcoin in presence and 2,385,193 bitcoin left to be mined. This paper will predict the nature of bitcoin price because, according to the reports of the past few years. The year 2020-present appeared to be a good time for bitcoin because, in this time duration, bitcoin has seen huge ups and downs. This paper will use various Machine Learning Techniques for the predictive analysis of bitcoin to accurately predict the price's nature. As the price of bitcoin depends upon various factors and these factors directly affect the price, i.e., multiple factors of bitcoin are dependent on each other. After analyzing the results from multiple research papers and review papers, we discovered each algorithm has its advantages and disadvantages while predicting the bitcoin value. Keeping in mind all the findings, we will find algorithms that predict the bitcoin price accurately and without fewer disadvantages. So, if we go as per assumptions, regression would be the best choice for predicting the bitcoin value, but there are others algorithms also. So, in this paper, we will see the results of the multiple algorithms and then choose the correct algorithm after analyzing the results of all the implemented algorithms. This paper also includes the implementation of the comparison charts with each algorithm so that it will be easy to analyze the findings of each algorithm.

Publisher

American Scientific Publishing Group

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Cryptocurrency Security Using AI Risk Management Model;IEEE Consumer Electronics Magazine;2024-01

2. Corporate Marketing Strategy Analysis with Machine Learning Algorithms;Wireless Communications and Mobile Computing;2022-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3