A Survey on Machine Learning Techniques for Supply Chain Management

Author:

.. Amal F.Abd El, , , ,Zaki Shereen,Kamal Esraa

Abstract

Machine learning arose from the increasing ability of machines to handle large amounts of data over the last two decades, and some machines could also identify hidden patterns and complicated associations that humans couldn't, allowing them to make rational and precise decisions, especially for disruptive and discontinuous data. In several areas of decision-making, machines could produce more reliable outcomes than humans and have already begun to replace them. Machine learning, which is widely recognized as a breakthrough technology, has recently made significant progress in improving supply chain management processes and efficiency. From planning to delivery, machine learning may be applied at different stages of the supply chain management process. Machine learning types are supervised, unsupervised, reinforcement. Each type has many tools which are discussed below in detail. This paper presents a detailed survey on machine learning techniques for supply chain management including supply chain and supply chain management interpretation, machine learning definition, its types, and some algorithms that belong to it.

Publisher

American Scientific Publishing Group

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3