NeutroAlgebra is a Generalization of Partial Algebra

Author:

Smarandache Florentin,

Abstract

In this paper we recall, improve, and extend several definitions, properties and applications of our previous 2019 research referred to NeutroAlgebras and AntiAlgebras (also called NeutroAlgebraic Structures and respectively AntiAlgebraic Structures). Let be an item (concept, attribute, idea, proposition, theory, etc.). Through the process of neutrosphication, we split the nonempty space we work on into three regions {two opposite ones corresponding to and , and one corresponding to neutral (indeterminate) (also denoted ) between the opposites}, which may or may not be disjoint – depending on the application, but they are exhaustive (their union equals the whole space). A NeutroAlgebra is an algebra which has at least one NeutroOperation or one NeutroAxiom (axiom that is true for some elements, indeterminate for other elements, and false for the other elements). A Partial Algebra is an algebra that has at least one Partial Operation, and all its Axioms are classical (i.e. axioms true for all elements). Through a theorem we prove that NeutroAlgebra is a generalization of Partial Algebra, and we give examples of NeutroAlgebras that are not Partial Algebras. We also introduce the NeutroFunction (and NeutroOperation).

Publisher

American Scientific Publishing Group

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Methodology for Evaluating Quality of Websites: A Hybrid Approach of Bipolar Neutrosophic Numbers (BNN)-SWARA- TOPSIS;International Journal of Applied and Computational Mathematics;2024-02-07

2. Real Examples of Neutrogeometry and Antigeometry;SSRN Electronic Journal;2024

3. Formulae for Finding the Number of NeutroTopological Spaces;NeutroGeometry, NeutroAlgebra, and SuperHyperAlgebra in Today's World;2023-04-14

4. A Study on Neutro-Topological Neighbourhood and Neutro-Topological Base;NeutroGeometry, NeutroAlgebra, and SuperHyperAlgebra in Today's World;2023-04-14

5. Neutro Geometric Topology and Its Examples;NeutroGeometry, NeutroAlgebra, and SuperHyperAlgebra in Today's World;2023-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3