Intelligent Fault Diagnosis of Gears Based on Deep Learning Feature Extraction and Particle Swarm Support Vector Machine State Recognition

Author:

Al-Masri Ahmed N. Al, , ,Mokayed Hamam

Abstract

Gear faults have always been a problem encountered in mechanical processing. For gear fault diagnosis, using mathematical-statistical feature extraction methods, deep learning neural networks (DLNN), particle swarm algorithm (PSA), and support vector machines (SVM), etc. According to the feature extraction of deep learning and particle swarm SVM state recognition, the intelligent diagnosis model is established, and the reliability of the model is verified by experiments. The model uses the combination of spectral features extracted by deep learning adaptively and the time domain features extracted by mathematical statistics methods to form a joint feature vector and then uses particle swarm SVM to diagnose the joint feature vector. After research, this paper draws a classification fitness curve combining the fault spectrum features extracted by DLNN and traditional time-domain statistical features. The classification result obtained by using this method is 95.3%. The reliability of the model is verified, and satisfactory diagnosis results are obtained. In addition, the application results also verify the effectiveness of adaptively extracting spectral features based on deep learning.

Publisher

American Scientific Publishing Group

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Metaverse in Education;2024 IEEE 1st Karachi Section Humanitarian Technology Conference (KHI-HTC);2024-01-08

2. Assessing the Effectiveness of Fingerprint Authentication in Preventing Fraud During Financial Transactions;2024 IEEE 1st Karachi Section Humanitarian Technology Conference (KHI-HTC);2024-01-08

3. Leveraging Advanced Technology And Design Thinking To Address Challenges Faced By Indian Adolescent Youth;2024 IEEE 1st Karachi Section Humanitarian Technology Conference (KHI-HTC);2024-01-08

4. Automated Invoice Processing System;2023 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM);2023-12-18

5. Analysis of a Carbon Neutralization Model Based on Neural Network;Lecture Notes on Data Engineering and Communications Technologies;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3