Affiliation:
1. Privolzhsky Research Medical University
Abstract
The brief review deals with the specific value of B vitamins for the nervous system, the mechanisms of transport and metabolic functions of cobalamin, pathogenetic theories related to vitamin B12 deficiency such as canonical biochemical theory and the theory of dysregulation of cytokines and growth factors; the hyperhomocysteinemic component of cerebral small vessel disease as one of the most common types of degenerative disorders of the central nervous system has been mentioned; the types of disorders associated with cobalamin deficiency that underlie its neurological manifestations have been described.
Publisher
Reaviz Medical University
Reference21 articles.
1. Zinovieva O.E., Emelyanova A.Yu., Kozhev A.I. et al. Neurological manifestations of vitamin B12 deficiency. Effective pharmacotherapy. 2021;17(6):22-28. (In Russ). https://doi.org/10.33978/2307-3586-2021-17-6-22-28
2. Pavlov Ch.S., Damulin I.V., Shulpekova Yu.O., Andreev E.A. Neurological disorders with vitamin B12 deficiency. Therapeutic archive. 2019;91(4):122-129. (In Russ). https://doi.org/10.26442/00403660.2019.04.000116
3. Charlton C.G. Methylation reactions at dopaminergic nerve endings, serving as biological off-switches in managing dopaminergic functions. Neur Regenerat Res. 2014;9(11):1110-1. https://doi.org/10.4103/16735374.135310
4. Moore Eileen, Mander Alastair, Ames David, Carne Ross and al. Cognitive impairment and vitamin B12: a review. Int Psychogeriat. 2012;24(4):541-556. https://doi.org/10.1017/S1041610211002511
5. Fernandes C.G., Borges C.G., Seminotti B., Amaral A.U. and al. Experimental evidence that methylmalonic acid provokes oxidative damage and compromises antioxidant defenses in nerve terminal and striatum of young rats. Cell Mol Neurobiol. 2011;31(5):775-785. https://doi.org/10.1007/s10571-011-9675-4