Effect of Tackifier Addition on Cushion Compound Formulation for Tire Retreading Application

Author:

Wisojodharmo Lies Agustine,Arti Dewi Kusuma,Pravitasari Retna Deca,Hidayat Ade Sholeh,Nisa Aisyah I.,Ariesta Muhammad N.

Abstract

Tire retreading is a prospective industry. Old tires are repaired and retreaded with suitable tread compounds to fulfill the requirement as the new ones. One of the important components in tire retreading process is cushion compound. Cushion compound consists of unsaturated rubber, in this case natural rubber Hevea brasiliensis was used, less phr of filler compared to the retread compound, and additives such as peptizer, tackifier, processing oil, antioxidant, activator, accelerator and curatives. Tackifier is an important component in cushion compound since its role to make a bonding between different layer, the initial tire after buffing and new retread layer. Tackifier should has good resistance, good compatibility and does not affect the rheological and dynamical properties of bonded rubber. The general tackifier that used in industries are hexamethyl tetramine as methylene donor and resorcinol as methylene acceptor. There is certain reaction between those two additives that determine how good the performance of cushion compound and its effect to retreading process. To obtain optimum reaction, comparison between resorcinol and hexamethyl tetramine were varied as 1:1 (FRR1), 1:2 (FRR2) and 1:3 (FRR3). Hardness test, compression test, rebound resilience, tensile and tear strength, and FTIR were done to observe the optimum variation for retread application. Compared to the control with no tackifier at all, FRR2 showed the optimum result with 21.75 MPa (min. 19 Mpa) and 454,54% elongation at break (min. 450%). The most interesting result was observation by using FTIR, it was detected that the crosslink density was significantly higher than other formulation. It is a new breakthrough which is minimum tackifier with certain treatment could give better performance.

Publisher

Indonesian Institute of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3