Improving Neural Network Based on Seagull Optimization Algorithm for Controlling DC Motor

Author:

Aribowo WidiORCID,Muslim Supari,Achmad Fendi,Hermawan Aditya Chandra

Abstract

This article presents a direct current (DC) motor control approach using a hybrid Seagull Optimization Algorithm (SOA) and Neural Network (NN) method. SOA method is a nature-inspired algorithm. DC motor speed control is very important to maintain the stability of motor operation. The SOA method is an algorithm that duplicates the life of the seagull in nature. Neural network algorithms will be improved using the SOA method. The neural network used in this study is a feed-forward neural network (FFNN). This research will focus on controlling DC motor speed. The efficacy of the proposed method is compared with the Proportional Integral Derivative (PID) method, the Feed Forward Neural Network (FFNN), and the Cascade Forward Backpropagation Neural Network (CFBNN). From the results of the study, the proposed control method has good capabilities compared to standard neural methods, namely FFNN and CFBNN. Integral Time Absolute Error and Square Error (ITAE and ITSE) values from the proposed method are on average of 0.96% and 0.2% better than the FFNN and CFBNN methods.

Publisher

Indonesian Institute of Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fractional Order Proportional Integral Derivative Based On Sea Horse-Optimizer As DC Motor Control;2023 Sixth International Conference on Vocational Education and Electrical Engineering (ICVEE);2023-10-14

2. Improved African Buffalo Optimization-Based Takagi–Sugeno–Kang Fuzzy PI Controller for Speed Control in BLDC Motor;Electric Power Components and Systems;2023-05-25

3. Marine Predators Algorithm For Tuning DC Motor;2022 Fifth International Conference on Vocational Education and Electrical Engineering (ICVEE);2022-09-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3