Development of proposals for formalising the process of filtering navigation information of an underwater robot at shallow depths

Author:

Dubynets O.1ORCID

Affiliation:

1. State University of Infrastructure and Technologies, Kyiv, Ukraine

Abstract

The purpose of the article is to increase the efficiency of solving the problems of stabilising underwater robots at shallow depths based on complex processing of navigation information and its filtering using the Kalman theory. This goal is achieved by defining a set of mathematical dependencies for formalising the process of filtering navigation information of underwater robots based on complex data processing. In this case, the filtering is carried out using a distributed set of Kalman filters of different structures, which were selected considering the characteristics of the data being evaluated. It has been established that at present, underwater robots at shallow depths are widely used around the world for various tasks, including search operations and underwater inspections. However, the operation of these robots is characterised by difficult conditions. These conditions include unknown parameters of underwater navigation, the impact of external disturbances, changes in the mass, size and hydrodynamic characteristics of robots while operating in water. Currently, the concept of control based on intelligent methods is considered a promising approach to automating the control of moving objects. However, the use of such controllers for underwater robots, together with the problems of obtaining up-to-date navigation information, has not yet achieved sufficient efficiency. In addition, the issues related to the development of a navigation information processing system using nonlinear filters and the creation of intelligent controllers for underwater robots are still insufficiently covered in the scientific and technical literature. The most significant result is a set of mathematical dependencies for formalising the process of filtering navigation information of underwater robots using a set of distributed Kalman filters of different structures. Such sets are closely correlated with the relevant characteristics of the data being evaluated. In this context, the inertial module with Kalman filtering algorithms can be used to measure angular motion parameters and solve the problems of roll, pitch and yaw stabilisation. Due to the low speeds of underwater robots at shallow depths and the absence of high-frequency interference in the pressure sensor measurements, the data from the pressure sensor can be used to determine the vertical speed

Publisher

SHEI Pryazovskyi State Technical University

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3