Portfolio optimization and risk management through Hierarchical Risk Parity and Logic Learning Machine: a case study applied to the Turkish stock market

Author:

,Gaggero Giacomo,Giribone Pier Giuseppe, ,Muselli Marco, ,Ünal Erenay, ,Verda Damiano,

Abstract

This study explores an innovative approach to portfolio optimization, bridging traditional Modern Portfolio Theory (MPT) with advanced Machine Learning techniques. We start by recognizing the significance of Markowitz's model in MPT and quickly proceed to focus on the Hierarchical Risk Parity (HRP) method. HRP overcomes some of the limitations of Markowitz's model, particularly in managing complex asset correlations, by offering a more refined risk management strategy that ensures balanced risk distribution across the portfolio. The paper then introduces an innovative Machine Learning approach that employs the Logic Learning Machine (LLM) method to enhance the explainability of the Hierarchical Risk Parity strategy. Such integration is considered the core research part of the study, given that its application makes the output of the model more accessible and transparent. A case study based on the Turkish stock market has been provided as an example. The combination of traditional financial theories with modern Machine Learning tools marks a significant advancement in investment management and portfolio optimization, emphasizing the importance of clarity and ease of understanding in complex financial portfolio models.

Publisher

Italian Association of Financial Industry Risk Managers (AIFIRM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3