Author:
Félix-Lizárraga Jesús Ulises,Ruiz-Torres Norma Angélica,Rincón-Sánchez Froylán,Sánchez-Ramírez Francisco Javier,Borrego-Escalante Fernando,Benavides Mendoza Adalberto
Abstract
Las poblaciones nativas de maíz cuentan con atributos que las diferencian por su área de adaptación a condiciones bióticas y abióticas adversas que pueden usarse en esquemas de selección. Los objetivos de la presente investigación fueron analizar la producción de materia seca en etapas tempranas de desarrollo y selección de poblaciones de maíz bajo condiciones de estrés por salinidad. Se evaluaron 118 poblaciones de maíz de la raza Ratón y dos testigos (híbridos) en ensayos realizados en invernadero en dos ambientes contrastantes en 2021 (con y sin estrés salina). Se determinó el peso seco de raíz, peso seco de vástago y el contenido de clorofila. En los ambientes se encontraron diferencias estadísticas en peso seco de vástago (p≤ 0.01) y el contenido de clorofila (p≤ 0.05), en tanto que en PSR no hubo diferencia. En los genotipos (poblaciones y testigos) se encontraron diferencias estadísticas (p≤ 0.01) para las variables de peso seco, excepto en el contenido de clorofila. No hubo evidencia de interacción de genotipos × ambientes en ninguna de las variables estudiadas. Las condiciones de estrés salino tuvieron un efecto en relación con las condiciones sin estrés con una reducción de 25.9% en PSR y 47.5% en peso seco de vástago. Se determina que existe variación genética en las poblaciones estudiadas de la raza Ratón para el peso seco de raíz y peso seco de vástago con una estimación de heredabilidad en sentido amplio de 0.6 y 0.62, respectivamente, lo que permite realizar selección de genotipos en la etapa temprana de desarrollo. De los 25 genotipos superiores se identificaron 10 en el ambiente favorable (testigo), seis en el ambiente de estrés (tolerantes a salinidad) y nueve con un comportamiento promedio a través de ambientes.
Publisher
Revista Mexicana de Ciencias Agricolas
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference19 articles.
1. Abdel-Ghani, A. H.; Kumar, B.; Reyes-Matamoros, J.; González-Portilla, P. J.; Jansen, C.; San Martin, J. P.; Lee, M. and Lübberstedt, T. 2013. Genotypic variation and relationships between seedling and adult plant traits in maize (Zea mays L.) inbred lines grown under contrasting nitrogen levels. Euphytica. 189(1):123-133. Ali, Q.; Muhammad, A.; Ali, F.; Muhammad, S.; Manzoor, M.; Khan, N. H.; Basra, S. M. A. and Mustafa, H. S. B. 2013. Genetic advance, heritability, correlation, heterosis and heterobeltiosis for morphological traits of maize (Zea mays L). Albanian J. Agric. Sci. 12(4):689-698.
2. Arce-Romero, A. R.; Monterroso-Rivas, A. I.; Gómez-Diaz, J. D. and Palacios-Mendoza, M. A. 2018. Potential yields of maize and barley with climate change scenarios and adaptive actions in two sites in Mexico. In: advances in information and communication technologies for adapting agriculture to climate change. Angelov, P.; Iglesia, J. A. and Corrales, J. C. Ed. Advances in Intelligent Systems and Computing. 687(1):197-208. Doi.org/10.1007/978-3-319-70187-5-15.
3. Bänziger, M.; Edmeades, G. O.; Beck, D. L. y Bellon, M. R. 2012. Mejoramiento para aumentar la tolerancia a sequía y a deficiencia de nitrógeno en el maíz: de la teoría a la práctica. Centro Internacional de Maíz y Trigo (CIMMYT). El Batán, Estado de México, DF. 61 p.
4. Correndo, A. A. y García, F. O. 2012. Concentración de nutrientes en planta como herramienta de diagnóstico: cultivos extensivos. Archivo Agronómico. 14(1):1-8.
5. Falconer, D. S. and Mackay, T. F. C. 1996. Introduction to Quantitative Genetics. 4th. Ed. Longman, Harlow, England. 464 p.