Variability of Single Trial ERP Measures Within a Session is Systematic and Nonlinear

Author:

LaGasse A. Blythe1,Gavin William J.1ORCID,Wilhelm Kyle1,Smith Ryan,Davies Patricia1ORCID

Affiliation:

1. Colorado State University

Abstract

Averaging multiple event-related potential (ERP) segments distorts the brain’s response to a stimulus given the false assumptions that the ERP signal is invariant and hidden by background noise. Our Single Trial Peaks (STP) procedure measures amplitude and latency of multiple peaks in each segment based on the peak latencies of the individual’s averaged ERP. This study examined correct trial data from 70 adults performing two repetitions of a speeded visual flanker task. STP peak data (P1, N1, P2, N2, and P3) were compared to single-trial averaged voltage in time windows (STW) and peaks of averaged ERPs. Results indicated that the STP approach had higher split-half reliability (odd-even, r =.70-.96) and test-retest reliability (r =.66-.97) than the STW approach. The mean signal/noise ratios for the amplitude measures for the STP ranged from 1.62 to 2.9 and were larger than the STW approach, although averaged ERPs had higher ratios than both. Coefficients of variation (CV) for the STP and STW approaches were similar, and both had smaller CVs than averaged ERPs. The validity of the STP approach was determined by regression analyses where mean trial-level peak amplitude, SDs across trials for amplitude and latency, and noise accounted for a significant amount of variance in corresponding peaks of the averaged ERPs (R2 =.73-.95). Curve fitting analyses showed nonlinear systematic patterns in amplitude over trials similar to changes in response time. These results support the validity of the STP approach which can be used to investigate systematic changes of brain activity across trial.

Publisher

Authorea, Inc.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3