Towards the fully automated monitoring of ecological communities

Author:

Besson Marc1ORCID,Alison Jamie2,Bjerge Kim2,Gorochowski Thomas1ORCID,Høye Toke2,Jucker Tommaso1,Mann Hjalte3,Clements Christopher1

Affiliation:

1. University of Bristol

2. Aarhus University

3. Aarhus Universitet

Abstract

High resolution monitoring is fundamental to understand and predict the dynamics of ecological communities in an era of global change and biodiversity declines. While real-time and fully automated monitoring of the abiotic components of ecosystems has been possible for some time, monitoring the biotic components at different organizational scales, e.g. from individual behaviours and traits to the abundance and distribution of species, is far more challenging. Recent technological advancements offer potential solutions to achieve this through: (i) increasingly affordable high throughput recording hardware, which can collect rich multidimensional data, and (ii) increasingly accessible artificial intelligence approaches, which are able to extract ecological knowledge from large datasets. However, automating the monitoring of facets of ecological populations and communities via such technologies is still in its infancy, being primarily achieved at low spatiotemporal resolutions within specific stages of the monitoring workflow. Here, we review existing technologies for data recording and processing that enable automated monitoring of ecological communities. We then present novel frameworks that combine such technologies, forming fully automated pipelines to detect, track, classify, and count multiple species, and even record behavioural and morphological traits, at resolutions which have previously been impossible to achieve. Based on these rapidly developing technologies, we illustrate a solution to one of the greatest challenges in ecology and conservation: the ability to rapidly generate high resolution, multidimensional, and critically, standardized data across complex ecologies.

Publisher

Authorea, Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3