PREDIKSI KASUS COVID-19 DI INDONESIA MENGGUNAKAN METODE BACKPROPAGATION DAN FUZZY TSUKAMOTO

Author:

Arianto Fra Siskus Dian,P Noviyanti

Abstract

Abstract - Pandemic COVID-19 has so far not subsided. This outbreak has spread to almost all countries in the world. As a result of this pandemic community activity and economy has decreased. The COVID-19 pandemic itself appeared in Indonesia precisely on March 2, 2020. 2 people tested positive for being infected with COVID-19 so that it was referred to as case 1 and case 2. After being detected a pandemic COVID-19 in Indonesia, Indonesia experienced an increase in cases every day positive COVID-19. The purpose of this research is to be able to obtain models in predicting the addition of COVID-19 cases in Indonesia based on time series data. In this research, the development of the Fuzzy Tsukamoto method is carried out to produce learning rate momentum which is then used in building network architecture in the Backpropagation method and produces a prediction model for adding COVID-19 cases in Indonesia. The model produced by conducting a network architecture experiment is the R-value (correlation coefficient) of 0.84278 and the prediction simulation produces an MSE of 1.632337 on the normalization data 16y=-0,7474+1,880411+e-0,5004+(1,6779)(xt)"> .Keywords -    Case COVID-19, Backpropagation Method, Tsukamoto Fuzzy Method, Prediction of COVID-19 cases. Abstrak – Pandemic COVID-19 sampai saat ini belum mereda. Wabah ini telah meluas dihampir seluruh negara didunia. Akibat dari pandemic ini aktivitas dan perekonomian masyarakat mengalami penurunan. Pandemic COVID-19 ini sendiri muncul di Indonesia tepatnya pada 2 Maret 2020. Terdapat 2 orang yang dinyatakan positif terinfeksi COVID-19 sehingga disebut sebagai kasus 1 dan kasus 2. Setelah terdeteksi adanya pandemic COVID-19 di Indonesia, setiap harinya Indonesia mengalami penambahan kasus positif COVID-19. Tujuan dilakukannya penelitian ini adalah untuk dapat memperoleh model dalam memprediksi penambahan kasus COVID-19 di Indonesia berdasarkan pada data time series. Pada penelitian ini dilakukan pengembangan terhadap metode Fuzzy Tsukamoto untuk menghasilkan learning rate momentum yang kemudian digunakan dalam membangun arsitektur jaringan pada metode Backpropagation dan menghasilkan sebuah model prediksi penambahan kasus COVID-19 di Indonesia. Model yang dihasilkan dengan melakukan 1 kali percobaan arsitektur jaringan adalah 16y=-0,7474+1,880411+e-0,5004+(1,6779)(xt)">  dengan nilai R (koefisien korelasi) sebesar 0,84278 dan simulasi prediksi menghasilkan MSE sebesar 1,632337 pada data normalisasi.Kata Kunci –    Kasus COVID-19, Metode Backpropagation, Metode Fuzzy Tsukamoto, Prediksi kasus COVID-19.

Publisher

Universitas Asahan

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Best Exponential Smoothing Method With Hyperparameter Tuning to Predict the Number of Pandemic Cases;2023 International Conference on Technology, Engineering, and Computing Applications (ICTECA);2023-12-20

2. Comparison of The Accuracy of Predicting The Number Of Positive Covid-19 Between The Neural Network and LSTM Methods;2023 International Conference on Informatics, Multimedia, Cyber and Informations System (ICIMCIS);2023-11-07

3. Forecasting Pergerakan Harga Volatility Index dengan Menggunakan Metode Fuzzy Tsukamoto dan Evaluasi Dstat Metric;Generation Journal;2023-03-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3