PENERAPAN ALGORITMA K-MEANS DALAM MENENTUKAN TINGKAT PENYEBARAN PANDEMI COVID-19 DI INDONESIA

Author:

Dwitri Nayuni,Tampubolon Jose Andreas,Prayoga Sandi,R.H Zer Fikrul Ilmi,Hartama Dedy

Abstract

Abstract  - COVID-19 is an infectious disease caused by acute coronavirus 2 (severe acute respiratory coronavirus 2 or SARS-CoV-2) respiratory syndrome. The even distribution of COVID-19 cases in all provinces in Indonesia is a fairly rapid spread and harms all fields. The vast territory of Indonesia allows the need for grouping sections by region in Indonesia. This grouping will produce center points for the spread of COVID cases - 19. K-Means is one of the Clustering algorithms that is used to divide data into several groups with a system partition. This algorithm accepts input in the form of data without class labels. Due to the global pandemic that occurred many parties sought to participate in overcoming. This research was conducted for application in the spread of the co-19 pandemic in Indonesia. In this study, the K-Means algorithm is used to determine the level of co-19 distribution in regions in Indonesia.Keywords - Algorithms, K-Means, Covid-19, The distribution, Pandemic Abstrak - COVID-19 adalah penyakit yang dapat menular jika adanya kontak antara penular dengan orang lain,dan  ditandai dengan  gejala pada bagian pernapasan disebut SARS-CoV-2. Penyebaran kasus COVID-19 yang merata di seluruh provinsi di Indonesia,merupakan penyebaran yang cukup cepat dan berdampak negatif pada seluruh bidang. Luasnya wilayah Indonesia memungkinkan diperlukannya pengelompokkan bagian bagian berdasarkan wilayah di Indonesia.Pengelompokkan ini akan menghasilkan titik – titik pusat penyebaran  kasus COVID -19. Salah satu algoritma Clustering adalah K-Means yang mengunakan beberapa kelompok untuk penempatan beberapa data dengan sistem partisi. Data-data tanpa label kelas diterima oleh Algoritma ini. Dikarenakan pandemi global yang terjadi banyak pihak berupaya ikut berperan serta dalam mengatasi. Penelitian ini dilakukan untuk penerapan dalam penyebaran pandemi covid-19 di Indonesia. Dalam penelitian ini mengunakan algoritma K-Means untuk menentukan bagaimana tingkat penyebaran covid-19 di daerah-daerah yang ada di Indonesia.Kata kunci - Algoritma, K-Means , COVID-19, Penyebaran, Pandemi  

Publisher

Universitas Asahan

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Visualization of hospital distribution for patients COVID-19 in the City of Surabaya using ArcGIS StoryMaps;AIP Conference Proceedings;2024

2. Robust k-means clustering for modeling the spread of coronavirus disease in Indonesia;AIP Conference Proceedings;2024

3. Elevating PCP Level Implementation: A Strategic Approach with Architecture Software in the Covid-19 Era;2023 International Conference on Informatics Engineering, Science & Technology (INCITEST);2023-10-25

4. Determining student satisfaction levels in online learning during the Covid-19 pandemic using the K-Medoids algorithm;AIP Conference Proceedings;2023

5. Analysis K-means of Covid-19 cases in Bandar Lampung and South Lampung;PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGY AND MULTIDISCIPLINE (ICATAM) 2021: “Advanced Technology and Multidisciplinary Prospective Towards Bright Future” Faculty of Advanced Technology and Multidiscipline;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3