The use of artificial intelligence to diagnose diseases and predict their outcomes in newborns

Author:

Kharlamova N. V.1ORCID,Yasinsky I. F.1ORCID,Ananyeva M. A.1ORCID,Shilova N. A.1ORCID,Nazarov S. B.1ORCID,Matveeva E. A.1ORCID,Budalova A. V.1ORCID,Ivanenkova Yu. A.1ORCID

Affiliation:

1. Gorodkov Ivanovo Research Institute of Maternity and Childhood

Abstract

   In recent years, modern models of artificial intelligence, including neural networks, have been successfully introduced into clinical practice, due to the high accuracy of functioning and the prospects of their use for the diagnosis and prediction of various diseases.   Purpose. To improve the processes of predicting and diagnosing diseases and their outcomes in newborns using neural network intelligent technologies.   Material and methods. The study is based on statistically reliable collection of patient history data, mathematical analysis, fuzzy logic theory and principles of trainable neural network systems.   Results. Neural network programs have been developed to predict the course of posthypoxic disorders of the cardiovascular system in newborns; to determine the probability of occurrence and outcomes in newborns of such significant diseases as cerebral leukomalacia, intracranial hemorrhages, hydrocephalus, necrotizing enterocolitis, bronchopulmonary dysplasia, retinopathy of prematurity, early anemia of prematurity; to predict the physical and neuropsychiatric development of a child to age of one year; and also to predict an unfavorable outcome (death or disability with persistent health problems) of children born earlier than 32 weeks of gestation.   Conclusion. The developed artificial neural network programs can be used for personification of the therapeutic and diagnostic process and nursing of newborns, including very preterm ones.

Publisher

The National Academy of Pediatric Science and Innovation

Subject

Pediatrics, Perinatology and Child Health

Reference19 articles.

1. Vyucheyskaya M.V., Krainova I.N., Gribanov A.V. Neural network technologies in the diagnosis of diseases (review). Zhurnal mediko-biologicheskikh issledovanii 2018; 6(3): 284–294. (in Russ.) DOI: 10.17238/issn2542-1298.2018.6.3.284

2. Basova L.A., Karyakina O.E., Martynova N.A., Kochorova L.V. Prediction of postoperative complications based on neural network technologies. Vestnik novykh meditsinskikh tehnologii 2015; 22(4): 117–121. (in Russ.) DOI: 10.12737/17035

3. Kravchenko V.O. Methods of using artificial neural networks in medicine. Ustoichivoe razvitie nauki i obrazovaniya 2018; 6: 266–270. (in Russ.)

4. Golovinova V.Yu., Kireev S.G., Kotenko P.K., Minaev Yu.L., Shtamburg I.N., Kuzmin S.G. Neural network models of morbidity prediction in organized collectives. Vestnik Rossiiskoi voenno-meditsinskoi akademii 2014; 3(47): 150–154. (in Russ.)

5. Faustova K.I. Neural networks: application today and prospects for development. Territoriya nauki 2017; 4: 83–87. (in Russ.)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. METHODS OF INTELLIGENT DATA ANALYSIS USING NEURAL NETWORKS IN DIAGNOSIS;Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska;2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3