X-ray powder diffraction study of synthetic Palmierite, K2Pb(SO4)2

Author:

Tissot Ralph G.,Rodriguez Mark A.,Sipola Diana L.,Voigt James A.

Abstract

Palmierite (K2Pb(SO4)2) has been prepared via a chemical synthesis method. Intensity differences were observed when X-ray powder data from the newly synthesized compound were compared to the published powder diffraction card (PDF) 29-1015 for Palmierite. Investigation of these differences indicated the possibility of preferred orientation and/or chemical inhomogeneity affecting intensities, particularly those of the basal (00l) reflections. Annealing of the Palmierite was found to reduce the effects of preferred orientation. Electron microprobe analysis confirmed K:Pb:S as 2:1:2 for the for the annealed Palmierite powder. Subsequent least-squares refinement and Rietveld analysis of the annealed powder showed peak intensities very close to that of a calculated Palmierite pattern (based on single crystal data), yet substantially higher than many of the PDF 29-1015 published intensities. Further investigation of peak intensity variation via calculated patterns suggested that the intensity discrepancies between the annealed sample and those found in PDF 29-1015 were potentially due to chemical variation in the K2Pb(SO4)2 composition. X-ray powder diffraction and crystal data for Palmierite are reported for the annealed sample. Palmierite is trigonal/hexagonal with unit cell parameters a=5.497(1) Å, c=20.864(2) Å, space group R-3m(166), and Z=3.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics,Instrumentation,General Materials Science,Radiation

Reference7 articles.

1. Crystallographic investigations of Glaserite from Mount Vesuvius (Italy);Von Saalfeld;Neues Jahrb. Mineral., Monatsh.,1973

2. FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing

3. Mathematische theorie der regelung nach der Korngestalt bei affiner deformation;March;Z. Kristallogr.,1932

4. International Tables for X-ray Crystallography (1974). (Kluwer Academic, Boston), Vol. IV, 71 pp.

5. Jenkins, R., and Snyder, R. L. (1996). Introduction to X-Ray Powder Diffractometry (Wiley, New York), pp. 149–150.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3