Determination of Zirconium, Hafnium, Niobium, Tantalum, Molybdenum and Tungsten in Aqueous Solutions by Radioisotopic Excited X-Ray Fluorescence

Author:

Chan Frank L.,Jones W. Barclay

Abstract

Previous investigations on the quantitative determination of sulfur, chlorine, potassium, calcium, scandium and titanium in aqueous solutions by a radioisotopic excited fluorescent spectrometer has been extended to include other elements which are very difficult to separate and determine quantitatively by chemical methods. Six elements taken for the investigation and some of the results to be presented in this paper are: (1)zirconium,(2)hafnium,(3)niobium,(4)tantalum,(5)molybdenum and(6)tungsten. As in previous investigations, aqueous solutions have been used because of the ease in obtaining exact concentrations and homogeneous mixtures of the elements under investigation.In the earlier investigations which have been reported in this conference, lighter elements (atomic numbers ranging from 16 to 22) were used for the investigation. In the present studies, however, comparatively heavier elements have been used. Therefore a radioisotope such as iron 55 used earlier is not suitable because it cannot excite the K x-ray of these elements. To excite the K and L of these elements, we use the radioisotope iodine 125. The advantage of using this radioisotope is that it is inexpensive and commercially available although its half-life is comparatively short.The spectrometer used with further improvements has been described and presented earlier. We used a multi-channel analyzer of 1000 in the present investigation, A liquid cell was specially designed for thisr study. Chemicals used for preparation of solutions were of reagent grades. Some of them had to be specially prepared. For example, hafnium, often contaminated with zirconium, was specially prepared and checked spectroscopically. Some difficulties have been encountered in preparing concentrated solutions such as niobium and tantalum due to the inherit characteristics of these elements to form insoluble compounds. Procedures will be described for the preparation of these solutions. Instruments used and results will be presented in this paper.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3