Flash X-Ray Diffraction Systems

Author:

Dantzig Jonathan A.,Green Robert E.

Abstract

AbstractIn order to develop an optimum system for flash x-ray diffraction, consideration must be given to both optimum x-ray generation and optimum x-ray detection in the correct wavelength regime suitable for diffraction. Historically, most workers have concentrated their efforts in either the generation area or detection area, but not both. As early as 1942, experimental recording of Laue diffraction patterns was reported using a pulsed x-ray generator and exposure times of milliseconds. Recently, successful x-ray diffraction experiments have been reported with exposure times less than 100 nanoseconds.The purpose of the present paper is to trace the development of generation and detection systems for flash x-ray diffraction and to summarize the present state-of-the-art for such systems. A comparative evaluation is presented for flash x-ray diffraction systems using generators which rely on increased electron beam current and those which rely on higher potential difference. Comparison is also made between detection systems incorporating film recording, scintillators fiber-optically coupled to photomultiplier tubes, and image-intensifier systems both lens and fiber-optically coupled to fluorescent screens.A detailed description of the most rapid flash x-ray diffraction system developed to date is given. This system uses a Field Emission Fexitron single channel 300 kilovolt pulsed x-ray generator incorporating an x-ray tube with a beryllium output window. A fluorescent screen converts the x-ray diffraction image into a visible one and this visible image is focused on the first stage photocathode of an image intensifier tube either by direct fiber-optic coupling or by using a coupling lens. The image intensifier tube used is a cascaded three-stage electrostatic focus type with fiber-optic input and output faceplates and inter-stage couplers. Using this system Laue transmission diffraction patterns of single crystals and powder patterns of polycrystalline aggregates have been obtained with exposure times of 30 nanoseconds.

Publisher

Cambridge University Press (CUP)

Reference23 articles.

1. X‐Ray Detector for Dynamic Diffraction Studies

2. Aufbau und technische Eigenschaften von Hochvakuum-Röntgenblitzröhren,;Schaaffs;Z. Angew. Phys.,1954

3. Röntgenblitzröhre in Betrieb und Anwendung;Schall;Archive für Technisches Messen,1953

4. X-Ray Diffraction During Shock-Wave Compression

5. Recording of X-ray Diffraction Patterns using Flash X-rays in Connection with an Image Intensifier,;Jamet;Jour. Soc. Motion Picture and Television Engineers,1971

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High brillance X-ray sources;Topics in Applied Physics;1977

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3