Author:
Collins Leo W.,Wertz David L.
Abstract
AbstractThe analysis of coal and the understanding of the combustion process is complex, due to the heterogeneous nature of the material and the myriad of high-temperature reactions inherent in this fossil fuel. The research presented below utilizes recently-developed x-ray diffraction methods to analyze the coal combustion products generated from a laboratory-scale entrained-flow reactor. The reactor was designed, constructed, and tested, as planned for the initial phase of a long-term project to evaluate the coals located in Mississippi. In this initial phase a well-characterized coal was used, supplied by The Pennsylvania State University. The proximate, ultimate, and sulfur analyses of the coal, PSOC 1368p, are outlined in the Appendix. X-ray diffraction techniques have been used In the past to characterize coals. An analysis of the mineral transformation during coal combustion has also been performed using x-ray diffraction instrumentation. The semi-quantitative results of the pyrite (FeS2) phase transformation at variable temperatures and the percent combustion of the coal, as determined by x-ray methods are reported below.
Publisher
Cambridge University Press (CUP)