Abstract
The crystal structures of ASnFe(PO4)3 (A=Na2, Ca, Cd) phases, obtained by conventional solid state reaction techniques at (950–1000 °C), were determined at room temperature from X-ray powder diffraction (XRD) using Rietveld analysis. The three materials exhibit the Nasicon-type structure (R3c space group, Z=6) with a random distribution of Sn(Fe) within the framework. Hexagonal cell parameters when A=Na2, Ca and Cd are: a=8.628(1) Å, c=22.151(2) Å; a=8.569(1) Å, c=22.037(2) Å and a=8.587(1) Å, c=21.653(2) Å, respectively. Structural refinements show a partial occupancy of M1 (Na(1)) and M2 (Na(2)) sites in Na2SnFe(PO4)3 leading to the cationic distribution [Na1.22□1.78]M2[Na0.78□0.22]M1SnFe(PO4)3. Ca2+ ions are distributed only in the M1 site of [□3]M2[Ca]M1SnFe(PO4)3. From XRD data, it is difficult to unambiguously distinguish between Cd2+ and Sn4+ ions in CdSnFe(PO4)3. Nevertheless the overall set of cation–anion distances within the Nasicon framework clearly shows that the cationic distribution can be illustrated by the [□3]M2[Cd]M1SnFe(PO4)3 crystallographic formula. Distortion within the [Sn(Fe)(PO4)3] frameworks, in ASnFe(PO4)3 (A=Na2,Ca,Cd) phases, is shown to be related to the M1 site size. © 2004 International Centre for Diffraction Data.
Publisher
Cambridge University Press (CUP)
Subject
Condensed Matter Physics,Instrumentation,General Materials Science,Radiation
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献