Defect Structure of Synthetic Diamond and Related Phases

Author:

Badzian Andrzej R.

Abstract

AbstractThis paper examines the relationship between the lattice defects and crystallization process of synthetic diamonds. Diamonds synthesized by high pressure, high temperature methods as well as diamonds vapor deposited under metastable conditions are considered. High pressure crystals precipitated from Ni or Co solutions contain inclusions of metastable carbides and metal atoms distributed throughout a small fraction of the octahedral holes in the diamond lattice.Diamonds are grown metastabily by a chemical vapor deposition process in which CH4 and H2 are excited by a microwave plasma. Such diamonds are deposited as individual micro-monocrystals or as solid poly crystalline films. The defects in such crystals are related to impurities such as Si and H which produce point defects and tend to nucleate graphite, which can generate planar defects. Nucleation of a diamond phase on β-SiC is also considered, because of the lattice matching between them.Diamond structure is a prototype of a family of related phases such as cubic BN (sphalerite structure) and solid solutions of diamond and cubic BN, Cubic BN-diamond solid solutions (BN)x(C2)1-x,0<x<l are, in turn, a prototype of AIIIBV-CIV phases, of which (GaP)x(Si2)1-x,0<x<l is an example. Substitution of B-N (or Ga-P) by C-C (or Si-Si) atom pairs at lattice sites is characteristic of these solid solutions.

Publisher

Cambridge University Press (CUP)

Reference28 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diamond as a wear-resistant coating;Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences;1993-02-15

2. Growth of (100) oriented diamond thin films on ball structure diamond-like particles;Journal of Materials Research;1992-07

3. Characterization and Properties of Artificially Grown Diamond;Diamond and Diamond-like Films and Coatings;1991

4. Crystallization of diamond crystals and films by microwave assisted CVD (Part II);Materials Research Bulletin;1988-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3