Source separation with an acoustic vector sensor for terrestrial bioacoustics

Author:

Tolkova Irina1ORCID,Klinck Holger2ORCID

Affiliation:

1. School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA

2. K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, New York 14850, USA

Abstract

Passive acoustic monitoring is emerging as a low-cost, non-invasive methodology for automated species-level population surveys. However, systems for automating the detection and classification of vocalizations in complex soundscapes are significantly hindered by the overlap of calls and environmental noise. We propose addressing this challenge by utilizing an acoustic vector sensor to separate contributions from different sound sources. More specifically, we describe and implement an analytical pipeline consisting of (1) calculating direction-of-arrival, (2) decomposing the azimuth estimates into angular distributions for individual sources, and (3) numerically reconstructing source signals. Using both simulation and experimental recordings, we evaluate the accuracy of direction-of-arrival estimation through the active intensity method (AIM) against the baselines of white noise gain constraint beamforming (WNC) and multiple signal classification (MUSIC). Additionally, we demonstrate and compare source signal reconstruction with simple angular thresholding and a wrapped Gaussian mixture model. Overall, we show that AIM achieves higher performance than WNC and MUSIC, with a mean angular error of about 5°, robustness to environmental noise, flexible representation of multiple sources, and high fidelity in source signal reconstructions.

Funder

NSF-Simons Center for Mathematical and Statistical Analysis of Biology at Harvard

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3