The influence of source-filter interaction on the voice source in a three-dimensional computational model of voice production

Author:

Zhang Zhaoyan1ORCID

Affiliation:

1. UCLA School of Medicine , 31-24 Rehabilitation Center, 1000 Veteran Avenue, Los Angeles, California 90095-1794, USA

Abstract

The goal of this computational study is to quantify global effects of vocal tract constriction at various locations (false vocal folds, aryepiglottic folds, pharynx, oral cavity, and lips) on the voice source across a large range of vocal fold conditions. The results showed that while inclusion of a uniform vocal tract had notable effects on the voice source, further constricting the vocal tract only had small effects except for conditions of extreme constriction, at which constrictions at any location along the vocal tract decreased the mean and peak-to-peak amplitude of the glottal flow waveform. Although narrowing in the epilarynx increased the normalized maximum flow declination rate, vocal tract constriction in general slightly reduced the source strength and high-frequency harmonic production at the glottis, except for a limited set of vocal fold conditions (e.g., soft, long vocal folds subject to relatively high pressure). This suggests that simultaneous laryngeal and vocal tract adjustments are required to maximize source-filter interaction. While vocal tract adjustments are often assumed to improve voice production, our results indicate that such improvements are mainly due to changes in vocal tract acoustic response rather than improved voice production at the glottis.

Funder

National Institute on Deafness and Other Communication Disorders

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3