Exploiting environmental asymmetry for vessel localization from the vertical coherence of radiated noise

Author:

Shajahan Najeem12,Barclay David R.1ORCID,Lin Ying-Tsong3ORCID

Affiliation:

1. Department of Oceanography Dalhousie University 1 1355 Oxford Street, Halifax, Nova Scotia, B3H 4R2, Canada

2. School of Earth and Ocean Sciences University of Victoria 2 , Victoria, British Columbia, Canada

3. Scripps Institution of Oceanography, UC San Diego 3 , 9500 Gilman Drive, La Jolla, California 92093, USA

Abstract

A method to determine the range and bearing of a moving broadband acoustic source, such as a surface vessel, using the coherence measured on two omni-directional, vertically separated hydrophones is demonstrated using acoustic data recorded near Alvin Canyon on the New England shelf break. To estimate the vessel's range, two theoretical approaches, a half-space model and a Pekeris waveguide model based on normal modes, establish simple relationships between the broadband signal coherence and frequency, source range, and the vertical separation of the receiver hydrophones. A brute force inversion produces a passive acoustic estimate of vessel range. Rapidly changing bathymetry with large features, such as that near Alvin Canyon, produces azimuthal asymmetry in the plan-view coherence pattern about the receivers due to horizontal refraction, focussing, and the up- (down-) slope compression (extension) of modal interference patterns. For vessels with a constant speed and heading, this generates an asymmetry in the received power and vertical coherence fringing pattern. This effect is first demonstrated using reciprocal three-dimensional parabolic equation and raytracing models in an idealized Gaussian canyon, then observed in Alvin Canyon measurements. By comparing the experimental observations to the modeled coherence, the vessel's bearing and range relative to the receivers are obtained.

Funder

Office of Naval Research

Publisher

Acoustical Society of America (ASA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3