Broadband acoustic characterization of backscattering from a rough stratification interface

Author:

Weidner Elizabeth12ORCID,Weber Thomas C.2

Affiliation:

1. Marine Physical Laboratory, Scripps Institution of Oceanography, University of California 1 , San Diego, California 92037, USA

2. Center for Coastal and Ocean Mapping, University of New Hampshire 2 , Durham, New Hampshire 03824, USA

Abstract

Broadband acoustic analysis of scattering from sharp density gradients in the water column generally treat the interfaces as smooth surfaces. However, these interfaces may exhibit roughness owing to external water column forcing and local convective processes. In this work we extend broadband backscatter analysis methods to consider interface roughness by drawing upon methods developed for sea surface and seabed acoustic backscattering. The one-dimensional acoustic model from Weidner and Weber [J. Acoust. Soc. Am. 150(6), 4353–4361 (2021)], which predicts a decay in the reflected wave amplitude from stratification interfaces with increasing frequency, was expanded for surface applications. The expanded model was used to analyze the scattered pressure field from interfaces over a range of surface roughness magnitudes. Analysis of model results indicate that stratification interface roughness, quantified by the root-mean-squared interface slope angle and root-mean-squared height of the interface, modifies the model-predicted frequency-dependent backscattering. A broadband acoustic inversion procedure to remotely measure the magnitude of the vertical extent of stratification gradients and the corresponding sound speed perturbation was defined. The broadband inversion method was tested on data collected in the Baltic Sea with well-documented, strong salinity-driven stratification.

Funder

NOAA Research

Publisher

Acoustical Society of America (ASA)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3