Ship detection and tracking from single ocean-bottom seismic and hydroacoustic stations

Author:

Trabattoni Alister1ORCID,Barruol Guilhem1ORCID,Dréo Richard1ORCID,Boudraa Abdel2ORCID

Affiliation:

1. Institut de physique du globe de Paris, Université de Paris Cité, CNRS 1 , F-75005 Paris, France

2. Ecole Navale IRENav/Arts & Métiers ParisTech, BCRM 2 , CC 600, 29240 Brest, France

Abstract

We report in this study how ocean-bottom seismometers (OBS) can be used as passive sonars to automatically detect, localize, and track moving acoustic sources at the ocean surface. We developed single-station methods based on direction of arrival and on multi-path interference measurements capable of handling continuous erratic signals emitted by ships. Based on a Bayesian mathematical framework, we developed an azimuthal detector and a radial detector and combined them into a fully automatic tracker. We tested the developed algorithm on seismic and hydroacoustic data recorded in the Indian Ocean by an OBS deployed at 4300 m depth, 200 km west of La Réunion Island. We quantified the performances using archives of commercial-vessel trajectories in the area provided by the Automatic Identification System. Detectors demonstrate capabilities in the detection range up to 100 km from the OBS with azimuthal accuracies of a few degrees and with distance accuracies of a few hundred of meters. We expect the method to be easily transposed to any other kind of sources (such as marine mammals).

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Reference40 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3