Dysarthria detection based on a deep learning model with a clinically-interpretable layer

Author:

Xu Lingfeng1ORCID,Liss Julie2,Berisha Visar2

Affiliation:

1. School of Computing and Augmented Intelligence, Arizona State University 1 , Tempe, Arizona 85281, USA

2. College of Health Solutions, Arizona State University 2 , Tempe, Arizona 85281, USA   lingfen3@asu.edu ; julie.liss@asu.edu ; visar@asu.edu

Abstract

Studies have shown deep neural networks (DNN) as a potential tool for classifying dysarthric speakers and controls. However, representations used to train DNNs are largely not clinically interpretable, which limits clinical value. Here, a model with a bottleneck layer is trained to jointly learn a classification label and four clinically-interpretable features. Evaluation of two dysarthria subtypes shows that the proposed method can flexibly trade-off between improved classification accuracy and discovery of clinically-interpretable deficit patterns. The analysis using Shapley additive explanation shows the model learns a representation consistent with the disturbances that define the two dysarthria subtypes considered in this work.

Funder

National Institute on Deafness and Other Communication Disorders

Publisher

Acoustical Society of America (ASA)

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

Reference37 articles.

1. Articulatory deficits in Parkinsonian dysarthria: n acoustic analysis;J. Neurol. Neurosurg. Psychiatry,1991

2. Automatic early detection of Amyotrophic Lateral Sclerosis from intelligible speech using convolutional neural networks,2018

3. Digital medicine and the curse of dimensionality;NPJ Digit. Med.,2021

4. Automatic assessment of dysarthria severity level using audio descriptors,2017

5. Revisiting dysarthria assessment intelligibility metrics,2004

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3