Advanced accent/dialect identification and accentedness assessment with multi-embedding models and automatic speech recognition

Author:

Ghorbani Shahram1,Hansen John H. L.1ORCID

Affiliation:

1. Center for Robust Speech Systems (CRSS), The University of Texas at Dallas , Richardson, Texas 75080, USA

Abstract

The ability to accurately classify accents and assess accentedness in non-native speakers are challenging tasks due primarily to the complexity and diversity of accent and dialect variations. In this study, embeddings from advanced pretrained language identification (LID) and speaker identification (SID) models are leveraged to improve the accuracy of accent classification and non-native accentedness assessment. Findings demonstrate that employing pretrained LID and SID models effectively encodes accent/dialect information in speech. Furthermore, the LID and SID encoded accent information complement an end-to-end (E2E) accent identification (AID) model trained from scratch. By incorporating all three embeddings, the proposed multi-embedding AID system achieves superior accuracy in AID. Next, leveraging automatic speech recognition (ASR) and AID models is investigated to explore accentedness estimation. The ASR model is an E2E connectionist temporal classification model trained exclusively with American English (en-US) utterances. The ASR error rate and en-US output of the AID model are leveraged as objective accentedness scores. Evaluation results demonstrate a strong correlation between scores estimated by the two models. Additionally, a robust correlation between objective accentedness scores and subjective scores based on human perception is demonstrated, providing evidence for the reliability and validity of using AID-based and ASR-based systems for accentedness assessment in non-native speech. Such advanced systems would benefit accent assessment in language learning as well as speech and speaker assessment for intelligibility, quality, and speaker diarization and speech recognition advancements.

Funder

National Science Foundation

University of Texas at Dallas

Publisher

Acoustical Society of America (ASA)

Reference51 articles.

1. Deep speech 2: End-to-end speech recognition in English and Mandarin,2016

2. Advances in phone-based modeling for automatic accent classification;IEEE Trans. Audio, Speech Lang. Process.,2006

3. Language accent classification in American English;Speech Commun.,1996

4. A study of temporal features and frequency characteristics in American English foreign accent;J. Acoust. Soc. Am.,1997

5. Frequency characteristics of foreign accented speech,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3