Feature-based maximum entropy for geophysical properties of the seabed

Author:

Knobles D. P.1,Hodgkiss William2,Chaytor Jason3ORCID,Neilsen Tracianne4,Lin Ying-Tsong2

Affiliation:

1. Platt Institute of Nuclear Physics 1 , P.O. Box 27200, Austin, Texas 78755, USA

2. Scripps Institution of Oceanography, University of California at San Diego 2 , La Jolla, California 92093, USA

3. U.S. Geological Survey, Woods Hole Coastal and Marine Science Center 3 , Woods Hole, Massachusetts 02543, USA

4. Department of Physics and Astronomy, Brigham Young University 4 , Provo, Utah 84602, USA

Abstract

The coherent recombination of a direct and seabed reflected path is sensitive to the geophysical properties of the seabed. The concept of feature-based inversion is used in the analysis of acoustic data collected on a vertical line array (VLA) on the New England continental shelf break in about 200 m of water. The analysis approach for the measurements is based on a ray approach in which a direct and bottom reflected path is recombined, resulting in constructive and destructive interference of the acoustic amplitudes with frequency. The acoustic features have the form of prominent nulls of the measured received levels as a function of frequency as a broadband (500–4500 Hz) source passes the closest point of approach to the VLA. The viscous grain shearing (VGS) model is employed to parameterize a two-layer seabed model. The most likely seabed is a sand sediment with a porosity of about 0.42. There is a possibility of a thin (less than 0.5 m) surface layer having a slightly higher porosity between 0.45 and 0.50. Using the estimates for the VGS parameters inferred from the short-range frequency features, a normal mode model is used to predict the received acoustic levels over larger range scales.

Funder

Office of Naval Research

Publisher

Acoustical Society of America (ASA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3