Concentration of reflected sound in a room treated with cube corner retroreflectors

Author:

Cabrera Densil1ORCID,Holmes Jonothan1ORCID,Lu Shuai12ORCID

Affiliation:

1. Sydney School of Architecture, Design and Planning, The University of Sydney 1 , Sydney, New South Wales 2006, Australia

2. Shenzhen International Graduate School, Tsinghua University 2 , Shenzhen, Guangdong 518055, China

Abstract

A room was treated to be predominantly retroreflective in the high frequency range by introducing arrays of cube corner retroreflectors (CCRs) over most surfaces (excluding the floor). In a small room (volume 55 m3), 156 CCRs in the form of square trihedra with 350 mm edge lengths were used as wall and ceiling treatment. The horizontal plane distribution of reflected energy was measured from omnidirectional sources, and a head and torso simulator was used to measure voice support. Results show a high concentration of reflected energy returned to omnidirectional source positions in high frequency octave bands (2–8 kHz). Finite-difference time-domain (FDTD) simulations of the room yielded similar distributions to the omnidirectional measurements, showing greater sound concentration when more CCRs are introduced. By contrast, FDTD simulation of an equivalent flat-surfaced room yielded no reflected sound concentration at the source, with results close to diffuse field theory in high frequency octave bands. Measured voice support values derived from oral-binaural room impulse responses exceed diffuse theory expectations by 5 dB. Thus, the paper demonstrates that retroreflective array treatment can change room acoustical conditions, concentrating reflected energy onto an arbitrarily located source.

Publisher

Acoustical Society of America (ASA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3