In-depth investigations into symmetrical labyrinthine acoustic metamaterial with two micro-slit entries for low-frequency sound absorption

Author:

Pavan Golakoti1ORCID,Singh Sneha1ORCID

Affiliation:

1. Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee , Roorkee, Uttarakhand, 247667, India

Abstract

Sound absorption below 1000 Hz has been extremely difficult through traditional barriers and absorbers, but it is required for noise control of appliances and machineries. Existing passive acoustic metamaterials attenuate low-frequency noise but with narrow bandwidths and bulky sizes. Hence, this paper proposes an acoustic metamaterial with enclosed symmetrical labyrinthine air channels and two micro-slits (configuration 1, identical slits; configuration 2, unequal length slits) at the end channels. Its theoretical model is established by acoustic impedance analysis using electro-acoustic analogy and validated numerically and experimentally. Sound absorption is found to happen as a result of impedance matching, Fabry-Perot-like labyrinthine resonances, and thermo-viscous losses in micro-slits. Parametric investigations reveal that increase in the number of channels, channel length, total height, and outer panel thickness shifts sound absorption peak to lower frequency but also decreases the magnitude and frequency range of absorption. Decreasing the channel width and slit width increases the sound absorption magnitude without changing absorption frequencies. Interestingly, unequal slit lengths perform better than equal slits by giving a lower frequency sound absorption with increased magnitude and frequency range, which is unlike that in existing labyrinthine metamaterials. Therefore, the proposed unequal slit metamaterial has enhanced low-frequency sound absorption and can be applied to appliances and machineries.

Funder

Climate ETC Technology Services Private Limited

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3