Temporal coherence of harmonic frequencies affects echo detection in the big brown bat, Eptesicus fuscus

Author:

Simmons James A.1ORCID,Hom Kelsey N.1,Simmons Andrea Megela12ORCID

Affiliation:

1. Department of Neuroscience and Carney Institute for Brain Science, Brown University 1 , 185 Meeting Street, Providence, Rhode Island 02912, USA

2. Department of Cognitive, Linguistic and Psychological Sciences, Brown University 2 , 190 Thayer Street, Providence, Rhode Island 02912, USA

Abstract

Echolocating big brown bats (Eptesicus fuscus) broadcast frequency modulated (FM) ultrasonic pulses containing two prominent harmonic sweeps (FM1, FM2). Both harmonics typically return as echoes at the same absolute time delay following the broadcast, making them coherent. Electronically splitting FM1 and FM2 allows their time delays to be controlled separately, making them non-coherent. Earlier work shows that big brown bats discriminate coherent from split harmonic, non-coherent echoes and that disruptions of harmonic coherence produce blurry acoustic images. A psychophysical experiment on two trained big brown bats tested the hypothesis that detection thresholds for split harmonic, non-coherent echoes are higher than those for coherent echoes. Thresholds of the two bats for detecting 1-glint echoes with coherent harmonics were around 35 and 36 dB sound pressure level, respectively, while thresholds for split harmonic echoes were about 10 dB higher. When the delay of FM2 in split harmonic echoes is shortened by 75 μs to offset neural amplitude-latency trading and restore coherence in the auditory representation, thresholds decreased back down to those estimated for coherent echoes. These results show that echo detection is affected by loss of harmonic coherence, consistent with the proposed broader role of coherence across frequencies for auditory perception.

Funder

Office of Naval Research

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3