Sound scattering and radiation suppression by pressurized spherical shells

Author:

Godin Oleg A.1ORCID

Affiliation:

1. Department of Physics, Naval Postgraduate School , 833 Dyer Road, Monterey, California 93943-5216, USA

Abstract

Thin-shell models offer important insights into the complex process of sound-structure interaction but are found to be inconsistent with the rigorous thick-shell theory for fluid-loaded spherical shells. Here, linearized equations of motion of fluid-loaded, thin, spherical shells are re-derived from the first principles. The shell may be prestressed due to the difference in the static pressures in the internal and external fluids. Differences in the fluid-loading terms from previously proposed ad hoc models are identified and their significance is analyzed. Analytic solutions are derived of the problems of spherical sound wave scattering by a fluid-filled, prestressed spherical shell and resonant vibrations of the shell. The results reduce to a number of known exact and asymptotic solutions in appropriate limiting cases. The mathematical model of the shell vibrations is applied to characterize the influence of the shell's material properties and the prestress on passive suppression of low-frequency underwater sound radiation due to diffraction on an acoustically compliant sphere, such as an encapsulated gas bubble. Using soft rubber as the encapsulating membrane is found to preserve the sound suppression qualities of the free gas bubble.

Funder

Office of Naval Research

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3