The effects of range and echo-phase on range resolution in bottlenose dolphins (Tursiops truncatus) performing a successive comparison task

Author:

Christman Katie A.12,Finneran James J.3ORCID,Mulsow Jason2ORCID,Houser Dorian S.2ORCID,Gentner Timothy Q.14ORCID

Affiliation:

1. Department of Psychology, University of California, San Diego 1 , 9500 Gilman Drive, La Jolla, California 92093, USA

2. Department of Biologic and Bioacoustic Research, National Marine Mammal Foundation, 3131 2 , 2240 Shelter Island Drive, San Diego, California 92106, USA

3. United States Navy Marine Mammal Program, Naval Information Warfare Center Pacific Code 56710 3 , 53560 Hull Street, San Diego, California 92152, USA

4. Department of Neurobiology, University of California, San Diego 4 , 9500 Gilman Drive, La Jolla, California 92093, USA

Abstract

Echolocating bats and dolphins use biosonar to determine target range, but differences in range discrimination thresholds have been reported for the two species. Whether these differences represent a true difference in their sensory system capability is unknown. Here, the dolphin's range discrimination threshold as a function of absolute range and echo-phase was investigated. Using phantom echoes, the dolphins were trained to echo-inspect two simulated targets and indicate the closer target by pressing a paddle. One target was presented at a time, requiring the dolphin to hold the initial range in memory as they compared it to the second target. Range was simulated by manipulating echo-delay while the received echo levels, relative to the dolphins' clicks, were held constant. Range discrimination thresholds were determined at seven different ranges from 1.75 to 20 m. In contrast to bats, range discrimination thresholds increased from 4 to 75 cm, across the entire ranges tested. To investigate the acoustic features used more directly, discrimination thresholds were determined when the echo was given a random phase shift (±180°). Results for the constant-phase versus the random-phase echo were quantitatively similar, suggesting that dolphins used the envelope of the echo waveform to determine the difference in range.

Funder

Office of Naval Research

Publisher

Acoustical Society of America (ASA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3