Quantifying uniaxial prestress and waveguide effects on dynamic elastography estimates for a cylindrical rod

Author:

Salehabadi Melika1,Nammari Lara1,Luna Aime1,Crutison Joseph1,Klatt Dieter1,Royston Thomas J.1

Affiliation:

1. UIC Richard and Loan Hill Department of Biomedical Engineering, University of Illinois Chicago , 851 South Morgan Street, Chicago, Illinois 60607, USA

Abstract

Dynamic elastography attempts to reconstruct quantitative maps of the viscoelastic properties of materials by noninvasively measuring mechanical wave motion in them. The target motion is typically transversely-polarized relative to the wave propagation direction, such as bulk shear wave motion. In addition to neglecting waveguide effects caused by small lengths in one dimension or more, many reconstruction strategies also ignore nonzero, non-isotropic static preloads. Significant anisotropic prestress is inherent to the functional role of some biological materials of interest, which also are small in size relative to shear wavelengths in one or more dimensions. A cylindrically shaped polymer structure with isotropic material properties is statically elongated along its axis while its response to circumferentially-, axially-, and radially-polarized vibratory excitation is measured using optical or magnetic resonance elastography. Computational finite element simulations augment and aid in the interpretation of experimental measurements. We examine the interplay between uniaxial prestress and waveguide effects. A coordinate transformation approach previously used to simplify the reconstruction of un-prestressed transversely isotropic material properties based on elastography measurements is adapted with partial success to estimate material viscoelastic properties and prestress conditions without requiring advanced knowledge of either.

Funder

National Institute of Arthritis and Musculoskeletal and Skin Diseases

Directorate for Engineering

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3