Time domain turbo equalization based on vector approximate message passing for multiple-input multiple-output underwater acoustic communications

Author:

Li Wei-Zhe12,Han Xiao13,Zhu Guang-jun12,Yin Jing-wei12

Affiliation:

1. National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University 1 , Harbin 150001, China

2. College of Underwater Acoustic Engineering, Harbin Engineering University 2 , Harbin 150001, China

3. Key Laboratory for Polar Acoustics and Application of Ministry of Education, Harbin Engineering University, Ministry of Education 3 , Harbin 150001, China

Abstract

This paper proposes a high-performance receiver for underwater acoustic communications based on time reversal processing for multiple-input multiple-output (MIMO) systems. The receiver employs the vector approximate message passing (VAMP) algorithm as a soft equalizer in turbo equalization. By performing self-iteration between the inner soft slicer and the inner soft equalizer, the VAMP algorithm achieves near-optimal performance. Furthermore, an iterative channel-estimation-based soft successive interference cancellation method is incorporated to suppress co-channel interference in the MIMO system. Additionally, the introduction of passive time reversal technology can combine multiple channels into a single channel, which greatly reduces the computational complexity of the MIMO system, especially for large MIMO systems. The effectiveness of the proposed receiver is verified using experimental data collected in Songhua Lake, China in 2019. The results demonstrate that the proposed receiver significantly reduces the complexity of the traditional parallel-VAMP receiver without sacrificing performance and outperforms other receivers of the same type. Moreover, our experimental results also verify that the VAMP-turbo outperforms the generalized approximate message passing (GAMP)-turbo in terms of bit error rate and convergence performance.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Excellent Youth Foundation of Heilongjiang Province of China

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3