Seabed classification and source localization with Gaussian processes and machine learning

Author:

Frederick Christina1,Michalopoulou Zoi-Heleni1

Affiliation:

1. Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA,

Abstract

Workshop '97 data are employed for seabed classification and source range estimation. The data are acoustic fields computed at vertically separated receivers for various ranges and different environments. Gaussian processes are applied for denoising the data and predicting the field at virtual receivers, sampling the water column densely within the array aperture. The enhanced fields are used in combination with machine learning to map the signals to one of 15 sediment-range classes (corresponding to three environments and five ranges). The classification results after using Gaussian processes for denoising are superior to those when noisy workshop data are employed.

Funder

Office of Naval Research

Publisher

Acoustical Society of America (ASA)

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of sea surface waves and wind-generated bubbles on underwater sound source localization in the Persian Gulf;International Journal of Environmental Science and Technology;2024-05-22

2. Source depth estimation based on Gaussian processes using a deep vertical line array;Applied Acoustics;2024-01

3. Direction-of-Arrival Estimation Using Gaussian Process Interpolation;ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2023-06-04

4. Electronic specific heat capacities and entropies from density matrix quantum Monte Carlo using Gaussian process regression to find gradients of noisy data;The Journal of Chemical Physics;2023-06-02

5. Inversion in an uncertain ocean using Gaussian processes;The Journal of the Acoustical Society of America;2023-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3