Improving acoustic wave propagation models in highly attenuating porous materials

Author:

Bouchendouka A.1,Fellah Z. E. A.1ORCID,Nguyen C. T.2ORCID,Ogam E.1,Perrot C.2,Duval A.3,Depollier C.4

Affiliation:

1. Aix Marseille Univ, CNRS, Centrale Marseille, LMA UMR 7031 1 , Marseille, France

2. Univ Gustave Eiffel, Univ Paris Est Creteil, CNRS, UMR 8208, MSME 2 , F-77454 Marne-la-Vallée, France

3. Trèves products, services and innovation, 2-4 rue Emile Arqu’es 3 , CS 70017, 51686 Reims Cedex 2, France

4. Acoustics Laboratory of the University of Le Mans (LAUM), UMR 6613, Institut d'Acoustique - Graduate School (IA-GS), CNRS, Le Mans University 4 , Le Mans, France

Abstract

This article presents an improved and extended modeling approach for acoustic wave propagation in rigid porous materials, focusing on examples, such as plastic foams used for noise reduction in automotive applications. We demonstrate that the classical model (Johnson-Champoux-Allard) in the asymptotic high-frequency limit, widely employed in the literature, fails to accurately reconstruct the transmitted acoustic signal through high absorbent porous materials characterized by significant wave attenuation. The study focuses on the airborne ultrasonic frequency range (30–200 kHz). To address this limitation, we introduce new non-acoustic parameters Σ and V for viscous effects, and Σ′ and V′ for thermal effects, with surface and volumetric dimensions, respectively, allowing for the reconstruction of the transmitted signal and accurate modeling of the pronounced acoustic attenuation within the material. These parameters are incorporated into the expansion on skin depths of the dynamic tortuosity α(ω) and thermal tortuosity α′ (ω) response functions, which describe the inertial-viscous and thermal interactions between the fluid and the solid, respectively. This novel modeling approach enables a more comprehensive study of high attenuating porous media, which are crucial for effective noise reduction. Additionally, it opens up new possibilities for characterization beyond the capabilities of current models.

Publisher

Acoustical Society of America (ASA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3